Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.749
Filtrar
1.
Sci Rep ; 14(1): 9018, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641685

RESUMO

Cyperus rotundus rhizomes have been used in longevity remedies in Thailand for nourishing good health, which led us to investigate the effect on energy homeostasis, especially glucose utilization in myotubes and adipocytes, and on inhibition of lipogenesis in adipocytes. The results showed that an ethyl acetate extract of C. rotundus rhizomes (ECR) containing 1.61%w/w piceatannol, with a half-maximal concentration of 17.76 ± 0.03 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, caused upregulation and cell-membrane translocation of glucose transporters GLUT4 and 1 in L6 myotubes but downregulation and cytoplasmic localization of GLUT4 expression in 3T3-L1 adipocytes and was related to the p-Akt/Akt ratio in both cells, especially at 100 µg/mL. Moreover, ECR (25-100 µg/mL) significantly inhibited lipid accumulation via Adenosine Monophosphate-Activated Protein Kinase (AMPK), Acetyl CoA Carboxylase (ACC), and Glycogen Synthase Kinase (GSK) pathways. Its immunoblot showed increased expression of p-AMPKα/AMPKα and p-ACC/ACC but decreased expression of p-Akt/Akt and p-GSK3ß/GSK3ß in 3T3-L1 adipocytes. Moreover, the decreased expression of the adipogenic effectors, perilipin1 and lipoprotein lipase, in ECR-incubated adipocytes (50 and 100 µg/mL) indicated reduced de novo lipogenesis. Our study elucidated mechanisms of C. rotundus that help attenuate glucose tolerance in skeletal muscle and inhibit lipid droplet accumulation in adipose tissue.


Assuntos
Cyperus , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Adipogenia , Glucose/metabolismo , Adipócitos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células 3T3-L1
2.
Sci Rep ; 14(1): 9157, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644456

RESUMO

Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 µM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.


Assuntos
Tecido Adiposo Marrom , Ginsenosídeos , Lipopolissacarídeos , Mitocôndrias , Panax , Extratos Vegetais , Termogênese , Ginsenosídeos/farmacologia , Animais , Termogênese/efeitos dos fármacos , Panax/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Adipogenia/efeitos dos fármacos
3.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667324

RESUMO

After exposure to cold stress, animals enhance the production of beige adipocytes and expedite thermogenesis, leading to improved metabolic health. Although brown adipose tissue in rodents is primarily induced by ß3-adrenergic receptor (ADRB3) stimulation, the activation of major ß-adrenergic receptors (ADRBs) in pigs has been a topic of debate. To address this, we developed overexpression vectors for ADRB1, ADRB2, and ADRB3 and silenced the expression of these receptors to observe their effects on the adipogenic differentiation stages of porcine preadipocytes. Our investigation revealed that cold stress triggers the transformation of subcutaneous white adipose tissue to beige adipose tissue in pigs by modulating adrenergic receptor levels. Meanwhile, we found that ADRB3 promotes the transformation of white adipocytes into beige adipocytes. Notably, ADRB3 enhances the expression of beige adipose tissue marker genes, consequently influencing cellular respiration and metabolism by regulating lipolysis and mitochondrial expression. Therefore, ADRB3 may serve as a pivotal gene in animal husbandry and contribute to the improvement of cold intolerance in piglets.


Assuntos
Adipócitos Bege , Temperatura Baixa , Receptores Adrenérgicos beta 3 , Animais , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Adipócitos Bege/metabolismo , Suínos , Adipogenia/genética , Lipólise , Termogênese/genética , Diferenciação Celular , Mitocôndrias/metabolismo
4.
Mol Metab ; 83: 101930, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570069

RESUMO

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.

5.
Br J Pharmacol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644540

RESUMO

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.

6.
EMBO J ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.

7.
J Adv Res ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626873

RESUMO

INTRODUCTION: Obesity-induced bone loss affects the life quality of patients all over the world. Irisin, one of the myokines, plays an essential role in bone and fat metabolism. OBJECTIVE: Investigate the effects of irisin on bone metabolism via adipocytes in the bone marrow microenvironment. METHODS: In this study, we fed fibronectin type III domain-containing protein 5 (FNDC5, the precursor protein of irisin) knockout mice (FNDC5-/-) with a high-fat diet (HFD) for 10 weeks. The quality of bone mass was assessed by micro-CT analysis, histological staining, and dynamic bone formation. In vitro, the lipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was assayed by Oil Red O staining, and the osteogenic differentiation was assayed by alkaline phosphatase staining. Meanwhile, the gene expression in the BMSC-differentiated adipocytes by RNA sequence and the involved pathway of irisin were determined by western blot and qRT-PCR were performed. RESULTS: The FNDC5-/- mice fed with a HFD showed an increased body weight, fat content of the bone marrow and bone, and a decreased bone formation compared with those with a standard diet (SD). In vitro, irisin inhibited the differentiation of BMSCs into adipocytes and alleviated the inhibition of osteogenesis derived from BMSCs by the adipocyte supernatant. RNA sequence and blocking experiment showed that irisin reduced the production of interleukin 6 (IL-6) in adipocytes through downregulating the TLR4/MyD88/NF-κB pathway. Immunofluorescence staining of bone marrow further confirmed an increased IL-6 expression in the FNDC5-/- mice fed with HFD compared with those fed with SD, which suffered serious bone loss. CONCLUSION: Irisin downregulates activation of the TLR4/MyD88/NF-κB pathway, thereby reducing IL-6 production in adipocytes to enhance the osteogenesis of BMSCs. Thus, the rescue of osteogenesis of BMSCs, initially inhibited by IL-6, is a potential therapeutic target to mitigate obesity-induced osteoporosis.

8.
Gene ; 915: 148421, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561165

RESUMO

Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.

9.
Front Oncol ; 14: 1360471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571500

RESUMO

Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.

10.
Domest Anim Endocrinol ; 88: 106848, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38574690

RESUMO

Insulin is a potent adipogenic hormone that triggers a series of transcription factors that regulate the differentiation of preadipocytes into mature adipocytes. Ciglitazone specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. As a natural ligand of PPARγ, oleic acid (OA) can promote the translocation of PPARγ into the nucleus, regulate the expression of downstream genes, and promote adipocyte differentiation. We hypothesized that ciglitazone and oleic acid interact with insulin to enhance bovine preadipocyte differentiation. Preadipocytes were cultured 96 h in differentiation medium containing 10 mg/L insulin (I), 10 mg/L insulin + 10 µM cycloglitazone (IC), 10 mg/L insulin + 100 µM oleic acid (IO), or 10 mg/L insulin + 10 µM cycloglitazone+100 µM oleic acid (ICO). Control preadipocytes (CON) were cultured in differentiation medium (containing 5% fetal calf serum). The effects on the differentiation of Yanbian cattle preadipocytes were examined using molecular and transcriptomic techniques, including differentially expressed genes (DEGs) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. I, IC, IO, and ICO treatments produced higher concentrations of triglycerides (TAG) and lipid droplet accumulation in preadipocytes compared with CON treatment (P < 0.05). Co-treatment of insulin and PPARγ agonists significantly increased the expression of genes involved in regulating adipogenesis and fatty acid synthesis. (P < 0.05). Differential expression analysis identified 1488, 1764, 1974 and 1368 DEGs in the I, IC, IO and ICO groups, respectively. KEGG pathway analysis revealed DEGs mainly enriched in PPAR signalling, FOXO signaling pathway and fatty acid metabolism. These results indicate that OA, as PPARγ agonist, can more effectively promote the expression of bovine lipogenesis genes and the content of TAG and adiponectin when working together with insulin, and stimulate the differentiation of bovine preadipocytes. These findings provide a basis for further screening of relevant genes and transcription factors in intramuscular fat deposition and meat quality to enhance breeding programs.

11.
J Cell Physiol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577921

RESUMO

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.

12.
Int J Biochem Cell Biol ; : 106583, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657899

RESUMO

Protein crotonylation plays a role in regulating cellular metabolism, gene expression, and other biological processes. NDUFA9 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9) is closely associated with the activity and function of mitochondrial respiratory chain complex I. Mitochondrial function and respiratory chain are closely related to browning of white adipocytes, it's speculated that NDUFA9 and its crotonylation are associated with browning of white adipocytes. Firstly, the effect of NDUFA9 on white adipose tissue was verified in white fat browning model mice, and it was found that NDUFA9 promotes mitochondrial respiration, thermogenesis, and browning of white adipose tissue. Secondly, in cellular studies, it was discovered that NDUFA9 facilitates browning of white adipocytes by enhancing mitochondrial function, mitochondrial complex I activity, ATP synthesis, and mitochondrial respiration. Again, the level of NDUFA9 crotonylation was increased by treating cells with vorinostat (SAHA)+sodium crotonate (NaCr) and overexpressing NDUFA9, it was found that NDUFA9 crotonylation promotes browning of white adipocytes. Meanwhile, the acetylation level of NDUFA9 was increased by treating cells with SAHA+sodium acetate (NaAc) and overexpressing NDUFA9, the assay revealed that NDUFA9 acetylation inhibited white adipocytes browning. Finally, combined with the competitive relationship between acetylation and crotonylation, it was also demonstrated that NDUFA9 crotonylation promoted browning of white adipocytes. Above results indicate that NDUFA9 and its crotonylation modification promote mitochondrial function, which in turn promotes browning of white adipocytes. This study establishes a theoretical foundation for the management and intervention of obesity, which is crucial in addressing obesity and related medical conditions in the future.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38660803

RESUMO

BACKGROUND: RAB27A, a modulator of secretion, is expressed within vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.

14.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612723

RESUMO

Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.


Assuntos
Adipogenia , Proteínas Proto-Oncogênicas c-akt , Suínos , Animais , Adipogenia/genética , Proteína Morfogenética Óssea 2/genética , PPAR gama , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
15.
Diabetes Metab Syndr Obes ; 17: 1651-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616989

RESUMO

Aim: One of the most critical functions of adipose tissue is the production of adipokines, ie, numerous active substances that regulate metabolism. One is the newly discovered FAM19A5, whose older name is TAFA-5. Purpose: The study aimed to review the literature on the FAM19A5 protein. Methods: The review was conducted in December 2023 using the PubMed (Medline) search engine. Sixty-four papers were included in the review. Results: This protein exhibits the characteristics of an adipokine with positive features for maintaining homeostasis. The results showed that FAM19A5 was highly expressed in adipose tissue, with mild to moderate expression in the brain and ovary. FAM19A5 may also inhibit vascular smooth muscle cell proliferation and migration through the perivascular adipose tissue paracrine pathway. Serum levels of FAM19A5 were decreased in obese children compared with healthy controls. There are negative correlations between FAM19A5, body mass index, and fasting insulin. Serum FAM19A5 level is correlated with type 2 diabetes, waist circumference, waist-to-hip ratio, glutamic pyruvic transferase, fasting plasma glucose, HbA1c, and mean shoulder pulse wave velocity. FAM19A5 expression was reduced in mice with obesity. However, the data available needs to be clarified or contradictory. Conclusion: Considering today's knowledge about FAM19A5, we cannot consider this protein as a biomarker of the metabolic syndrome. According to current knowledge, FAM19A5 cannot be considered a marker of metabolic disorders because the results of studies conducted in this area are unclear.

17.
Mol Biochem Parasitol ; 258: 111618, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588892

RESUMO

Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.

18.
Microsc Res Tech ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441397

RESUMO

Cardiotoxicity induced by doxorubicin (Dox) is a major complication in cancer patients. Exosomes (Ex) derived from mesenchymal cells could be a promising therapeutic for various heart diseases. This study investigated the role of Ex in Dox-induced cardiotoxicity and its mechanistic insights, using Sacubitril/valsartan (S/V) as a reference drug widely recommended in heart failure management. The study involved 24 Wistar rats, divided into a control, Dox, Dox + S/V, and Dox + Ex groups. The rats were assessed for cardiac enzymes, inflammatory and oxidative stress markers. Immunohistochemical expression of caspase-1, nuclear factor erythroid 2-related factor 2 (NrF2), E-Cadherin, CD117/c-kit, and Platelet-derived growth factor-α (PDGFα) was evaluated. P53 and Annexin V were assessed by PCR. Histological examination was performed using hematoxylin and eosin and Sirius red stains. Ex ameliorated the adverse cardiac pathological changes and significantly decreased the cardiac enzymes and inflammatory and oxidative stress markers. Ex also exerted antifibrotic and antiapoptotic effect in heart tissue. Ex treatment also improved NrF2 immunohistochemistry, up-regulated E-Cadherin immune expression, and restored the telocyte markers CD117/c-kit and PDGFα. Ex can mitigate Dox-induced cardiotoxicity by acting as an anti-inflammatory, antioxidant, antiapoptotic, and antifibrotic agents, restoring telocytes and modulating epithelial mesenchymal transition. RESEARCH HIGHLIGHTS: Exosomes exhibit positive expression for CD90 and CD105 whereas showing -ve expression for CD 34 by flow cytometry. Exosomes restore the immunohistochemical expression of the telocytes markers CD117/c-kit and PDGFα. Exosomes alleviate myocardial apoptosis, oxidative stress and fibrosis.

19.
J Crohns Colitis ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466138

RESUMO

BACKGROUND AND AIMS: Intestinal fibrotic stenosis is a major reason for surgery in Crohn's disease [CD], but the mechanism is unknown. Thus, we asked whether intestinal adipocytes contribute to intestinal fibrosis. Adipocytes were found to transdifferentiate into myofibroblasts and confirmed to be involved in mesenteric fibrosis in our recent study. Here, we investigated the role and possible mechanisms of intestinal adipocytes in intestinal fibrosis in CD. METHODS: The intestinal tissue of patients with CD with or without fibrotic stenosis [CDS or CDN] and normal intestinal tissue from individuals without CD were obtained to assess alterations in submucosal adipocytes in CDS and whether these cells transdifferentiated into myofibroblasts and participated in the fibrotic process. Human primary adipocytes and adipose organoids were used to evaluate whether adipocytes could be induced to transdifferentiate into myofibroblasts and to investigate the fibrotic behaviour of adipocytes. LPS/TLR4/TGF-ß signalling was also studied to explore the underlying mechanism. RESULTS: Submucosal adipocytes were reduced in number or even absent in CDS tissue, and the extent of the reduction correlated negatively with the degree of submucosal fibrosis. Interestingly, submucosal adipocytes in CDS tissue transdifferentiated into myofibroblast-like cells and expressed collagenous components, possibly due to stimulation by submucosally translocated bacteria. LPS-stimulated human primary adipocytes and adipose organoids also exhibited transdifferentiation and profibrotic behaviour. Mechanistically, TLR4-mediated TGF-ß signalling was associated with the transdifferentiation and profibrotic behaviour of intestinal adipocytes in CDS tissue. CONCLUSIONS: Intestinal adipocytes transdifferentiate into myofibroblasts and participate in the intestinal fibrosis process in CD, possibly through LPS/TLR4/TGF-ß signalling.

20.
JHEP Rep ; 6(4): 101019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38455470

RESUMO

Background & Aims: Recent studies have implicated platelets, particularly α-granules, in the development of non-alcoholic steatohepatitis (NASH). However, the specific mechanisms involved have yet to be determined. Notably, thrombospondin 1 (TSP1) is a major component of the platelet α-granules released during platelet activation. Hence, we aimed to determine the role of platelet-derived TSP1 in NASH. Methods: Platelet-specific Tsp1 knockout mice (TSP1Δpf4) and their wild-type littermates (TSP1F/F) were used. NASH was induced by feeding the mice with a diet enriched in fat, sucrose, fructose, and cholesterol (AMLN diet). A human liver NASH organoid model was also employed. Results: Although TSP1 deletion in platelets did not affect diet-induced steatosis, TSP1Δpf4 mice exhibited attenuated NASH and liver fibrosis, accompanied by improvements in plasma glucose and lipid homeostasis. Furthermore, TSP1Δpf4 mice showed reduced intrahepatic platelet accumulation, activation, and chemokine production, correlating with decreased immune cell infiltration into the liver. Consequently, this diminished proinflammatory signaling in the liver, thereby mitigating the progression of NAFLD. Moreover, in vitro data revealed that co-culturing TSP1-deficient platelets in a human liver NASH organoid model attenuated hepatic stellate cell activation and NASH progression. Additionally, TSP1-deficient platelets play a role in regulating brown fat endocrine function, specifically affecting Nrg4 (neuregulin 4) production. Crosstalk between brown fat and the liver may also influence the progression of NAFLD. Conclusions: These data suggest that platelet α-granule-derived TSP1 is a significant contributor to diet-induced NASH and fibrosis, potentially serving as a new therapeutic target for this severe liver disease. Impact and implications: Recent studies have implicated platelets, specifically α-granules, in the development of non-alcoholic steatohepatitis, yet the precise mechanisms remain unknown. In this study, through the utilization of a tissue-specific knockout mouse model and human 3D liver organoid, we demonstrated that platelet α-granule-derived TSP1 significantly contributes to diet-induced non-alcoholic steatohepatitis and fibrosis. This contribution is, in part, attributed to the regulation of intrahepatic immune cell infiltration and potential crosstalk between fat and the liver. These findings suggest that platelet-derived TSP1 may represent a novel therapeutic target in non-alcoholic fatty liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...